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Independent observations can be used to diagnose and tune a data assimilation (DA) system.
Analysis increments generally improve the model state near assimilated observations but
degrade it further away. High-resolution aircraft observations from Mode-S Enhanced
Surveillance (Mode-S EHS) are used as an independent data source to verify increment
degradation as a function of distance from assimilated observations. An adaptation of the
inherently imperfect gain matrix in DA is proposed such that resulting analyses better fit the
independent data source and as such draw model simulations closer to the true atmospheric
state. It is found that the structure functions of the background-error covariance matrix
of the experimental mesoscale HARMONIE model are appropriate but too much weight is
given to observations relative to the model background. The ECMWF model is well tuned
with a slight overestimation of temperature information in the upper troposphere.

Finally, a caveat is highlighted when comparing model forecasts from different
experiments against observations. It is common practice to use the same observing system
both in the analysis and for forecast verification. However, forecast verification is prone to
sampling errors, yielding less favourable scores when using an independent data source.
Avoidance of biased conclusions on the impact of observing systems, e.g. in observing
system experiments (OSE), requires an independent data source (best practice) or a data
source used in all experiments (best pragmatic practice) for verification of forecasts from
different experiments.
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1. Introduction

The goal of data assimilation (DA) in numerical weather
prediction (NWP) is to find the best compromise (called analysis)
between a model simulation (called background or first-guess)
and observations. Model simulations tend to diverge from the true
atmospheric state when evolving in time. Observations are used to
keep the model on track of the true atmospheric state. However,
observations are imperfect too. Tuning of a DA system, i.e. giving
correct relative weight to the background and observations in the
analysis and spreading the observational information in space, is
a continuous challenge in NWP. The model analysis state vector,
xa, is obtained from the analysis equations which in their general
form read as (Lorenc, 1986; Daley, 1999)

xa = xb + K′[yo − H(xb)], (1)

K′ = B′HT(HB′HT + R′)−1, (2)

yo = H(xt) + εεε, (3)

with xb the background state vector, i.e. a short-term forecast
initiated with the previous analysis, yo is the vector with
observations, xt the true (but unknown) state vector and H the

observation operator which maps the model state to the observed
quantity. The observation operator may be a simple linear
interpolation operator for some observing systems, but may be
more complex, e.g. including a nonlinear radiative transfer model
for measured satellite radiances. Matrix H is the partial derivative
ofHwith respect to the state vector x. The total observation error,
εεε, equals the sum of the instrument error and representativeness
error which are discussed in detail below. Superscript T denotes
the matrix transpose. The impact of observations on the analysis
is determined by the prescribed background-error covariance
matrix, denoted below by B′, and the prescribed observation-
error covariance matrix, denoted below by R′. If both describe
well the true background- and observation-error covariances
(denoted without primes), then the resulting gain matrix, K′
in Eq. (2), yields the best compromise, in a statistical sense, of
background and observations in the analysis, Eq. (1).

In practice it is not trivial to correctly specify the B′ and
R′ matrices. Ideally, B′ should describe the short-term model
forecast errors. Many DA systems rely on a climatological B′
matrix as a pragmatic approach and which may be representative
for background errors on average but is a poor estimate for
each individual meteorological situation, because model forecast
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errors are related to the actual weather situation and observation
coverage, which both change with time.

The true R matrix is composed of errors from (i) instrument
noise, (ii) observation representativeness and (iii) mapping
from model to observation space, i.e. errors in the observation
operator (Lorenc, 1986). For well-characterized instruments,
the instrument error statistics are generally well-known with
a diagonal covariance matrix for observations with uncorrelated
errors but a dense matrix, e.g. for data from satellite sounders
(Weston et al., 2014). The representativeness error accounts for
spatial scales resolved by observations but not by the NWP
model. The smallest spatial scale resolved by a model is called
the effective model resolution which differs for different models.
Model and observation power density spectra or triple-collocation
techniques (Vogelzang et al., 2011) provide estimates for the
effective resolution of the model under investigation and resulting
observation representativeness error variance. As a rule of thumb,
nowadays NWP models’ effective resolution equals 7 to 10 times
the model grid size (Skamarock, 2004; Vogelzang et al., 2011). As a
consequence, representativeness errors of observations separated
by less than the model effective resolution are correlated and
the corresponding covariance matrix is non-diagonal. Also, the
true representativeness error is non-constant and a function of
local atmospheric turbulence. Error covariances of the linearized
observation operator strongly depend on the observing system
and range from interpolation errors to more complex nonlinear
errors, e.g. in radiative transfer functions for satellite radiance
data. From the above, it is more likely that R is a dense matrix in
general but, because of imperfect knowledge of these error sources
and computational efficiency, R′ is specified as a diagonal matrix
in most operational DA systems, thus neglecting correlation of
observation errors. This simplification is generally compensated
by inflating the error variances, i.e. by increasing the matrix
diagonal elements.

For a well-tuned DA system, B′ and R′ are such that the
observational information draws the model state toward the
true atmospheric state effectively. How can this be verified,
given that the true atmospheric state is inherently unknown?
Here a new methodology has been developed using independent
observations, i.e. observations not used in the analysis (also
denoted passive observations), in contrast to observations used
in the analysis (denoted active observations). These passive
observations represent the true atmospheric state. However,
passive observations are imperfect and their error sources should
be taken into account. Statistics of background and analysis
departures, i.e. observation minus background or analysis are
widely used to diagnose DA systems in general. Section 2 discusses
the different characteristics of departure statistics for active
and passive observations. Furthermore, analysis increments, i.e.
analysis minus background, are expected to become worse with
distance from assimilated observations. Passive observations can
be used to test this and possibly find the radius of action where
observations add positively to the analysis. Experimenting with
a real NWP model is computationally expensive. Therefore,
a simulation tool has been developed based on the analysis
equations, which allows easy and cheap assessment of the
sensitivity of the analysis to incorrectly specified B′ and R′
matrices. The tool is discussed in section 3 and it is shown
that passive observations can be used to tune a DA system.
In section 4, high-resolution aircraft observations from Mode-S
Enhanced Surveillance (Mode-S EHS; de Haan, 2011) are used
as passive observations in a six-week experiment with the non-
hydrostatic mesoscale HARMONIE (HIRLAM Aladin Regional
Mesoscale Operational NWP In Euromed) model. It is shown that
one has to be careful with selecting passive observations for DA
tuning. The same is true when assessing model forecast skill, e.g.
in OSE, using observations. Naive selection of observations for
forecast verification may lead to biased conclusions, as discussed
in section 5. Finally, section 6 summarizes the conclusions from
the study.

2. Departure statistics

Differences between observations and their model counterparts at
the observation locations are called departures. The background
departure, db = yo − H(xb), denoted in short below as (o − b),
is used to correct the model simulation (background) and bring
it closer to the true atmospheric state (Eq. (1)). Defining the
analysis error εεεa = xa − xt, then from Eq. (1) and rearranging
matrices, the analysis-error covariance matrix A′, which is the
result of using the gain matrix K′ from Eq. (2), equals

A′ := < εεεaεεεaT
>

= [I − K′H]B[I − K′H]T + K′RK′T (4)

with < . > denoting the expectation operator and I the identity
matrix. In general it is assumed that the background error, defined
as εεεb = xb − xt, and observation error are not correlated, i.e.
< εεεbεεεT >= 0. B :=< εεεbεεεbT

> and R :=< εεεεεεT > are the true,
but generally unknown, background- and observation-error
covariance matrices respectively. The expression ‘:=’ denotes
‘by definition’. For the unlikely situation of perfect knowledge
of B and R, substituting these in Eq. (2) yields the optimal gain
matrix K which minimizes the analysis-error variance of the
analysis-error covariance matrix (Bouttier and Courtier, 2002)
and Eq. (4) reduces to

A = [I − KH]B. (5)

From Eq. (3) the background departure covariance matrix of
actively used observations, yo, denoted in short < (o − b)2 >,
equals

< (o − b)2 > :=< dbdbT
>

=< [yo − H(xb)][yo − H(xb)]T >

=< [εεε − Hεεεb][εεε − Hεεεb]T >

= HBHT + R, (6)

with H the partial derivative of H with respect to model state
x at xt and assuming linearity: H(xb) = H(xt) + Hεεεb. From
Eq. (1) we can write for the analysis departure of actively used
observations, and assuming linearity,

da = yo − H(xa) = [I − HK′]db. (7)

Analysis departures are also denoted in short as (o − a) below
with covariance matrix

< (o − a)2 > :=< dadaT
>

=< [yo − H(xa)][yo − H(xa)]T >

=< [−Hεεεa + εεε][−Hεεεa + εεε]T > (8)

(7)= [I−HK′] <dbdbT
> [I−HK′]T, (9)

where it is noted thatεεεa andεεε are not independent in Eq. (8), hence
the covariance matrix of the analysis departures does not equal
the sum of the analysis-error covariance and observation-error
covariance for actively used observations in DA. For non-used
(passive) observations in DA, denoted yo

p, similar relations hold,
but now with subscript p: yo

p = Hp(xt) + εεεp with observation-
error covariance < εεεpεεε

T
p >= Rp. The covariance of background

departures, db
p = yo

p − Hp(xb), is written

< (op − b)2 > :=< db
pdb

p
T
>

=< [yo
p − Hp(xb)][yo

p − Hp(xb)]T >

=< [−Hpεεε
b + εεεp][−Hpεεε

b + εεεp]T >

= HpBHT
p + Rp (10)
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with Hp the partial derivative of Hp with respect to model state
x at xt. Similarly the covariance matrix of analysis departures,
da

p = yo
p − Hp(xa), is written

< (op − a)2 > :=< da
pda

p
T
>

=< [yo
p − Hp(xa)][yo

p − Hp(xa)]T >

=< [−Hpεεε
a+εεεp][−Hpεεε

a+εεεp]T > . (11)

Because passive observations have not been used in the analysis
it is tempting to assume < εεεaεεεT

p >= 0 yielding HpA′HT
p + Rp

from Eq. (11) and using the definition in Eq. (4). However, the
assumption of uncorrelated εεεa and εεεp is not true in general,
because the representativeness error of active observations (as
part of εεε and thus εεεa) and of passive observations (as part of εεεp)
may be correlated depending on their separation in space and
time. This is further explained in Appendix A. Here, only the final
result of Eq. (11) is presented

< (op − a)2 >= HpA′HT
p + Rp − (X + XT), (12)

with X denoting the matrix, defined in Appendix A, including
the cross-covariance of the representativeness errors of active and
passive observations. In general, the analysis departure is larger for
passive than active observations, i.e. the covariance from Eq. (12)
is larger than from Eq. (9). This is further explored in the next
section using a simulation tool, based on the analysis equations.

3. Simulation tool

A simulation tool has been developed to simulate the impact
of observations in the analysis. The tool enables us to test the
sensitivity to imperfectly specified background- and observation-
error covariances on the analysis by calculating the analysis-
error covariance from Eq. (4), given the true and prescribed
background- and observation-error covariance matrices. For
simplicity, the tool is one-dimensional. Observation sampling
is equidistant along a track of given length L km and at a constant
height level, thus simulating observations along (e.g.) an aircraft
or satellite track. Observations are separated by the sampling
distance, �s, yielding M = L/�s observations along the track.
The model grid size, �x, determines the size of the state vector:
N = L/�x. The model grid definition and observation locations
determine the observation operator H which is simply an M × N
interpolation matrix in our simulations.

In the simulations discussed below, we fix L at 5000 km and
�x at 2.5 km, giving a state vector of dimension N = 2000
and thus background- and analysis-error covariance matrices of
size 2000 × 2000. The choice for a 2.5 km grid is inspired by the
HARMONIE model discussed in section 4. The sampling distance
and thus the size of the observation vector and observation
operator matrix is not fixed and part of the evaluation. The
true background-error correlation, in the literature also denoted
structure function, is assumed a Gaussian function with error
standard deviation σB and length-scale (1 sigma) LB making the
true B a band-matrix. This definition for correlation length-scale
is in agreement with Daley (1999). The true R matrix is the sum
of a diagonal matrix, representing uncorrelated instrument errors
with error standard deviation σI , and a non-diagonal matrix
for the representativeness error with standard deviation σR. For
the correlation length-scale of the latter, we take a Gaussian
function with length-scale (1 sigma) LR = 25 km, representing
the smallest spatial scales the model can resolve. Calculations of
spectra (Vogelzang et al., 2011) for the HARMONIE model show
a strong drop relative to the theoretical k−5/3 spectrum, from
three-dimensional turbulence theory, starting at wavenumber, k,
corresponding to 25 km spatial scales (not shown), i.e. 10 times
the model grid size, slightly larger than the rule-of-thumb value
of 7. The elements of the N × N true background- and M × M

true observation-error covariance matrices, with indices i and j,
are

B(i, j) =σ 2
B exp[−{(i−j)�x}2/2L2

B], (13)

R(i, j) =σ 2
I I(i, j)+σ 2

R exp[−{(i−j)�s}2/2L2
R]. (14)

Both B and R are constructed such that they are positive definite
matrices.

3.1. Atmospheric state and observation simulation

The background state is defined as an N-dimensional vector
sum of the true atmospheric state and the background error:
xb = xt + εεεb, with the covariance of εεεb equal to B defined in
Eq. (13). To simulate εεεb, a N-dimensional vector composed of
random numbers from a Gaussian distribution with zero mean
and standard deviation 1 is pre-multiplied by B1/2. From matrix
algebra, the latter is obtained from an eigenvalue decomposition∗
B = Q���QT, with Q the orthogonal matrix of singular vectors
and ��� the diagonal matrix of strictly positive eigenvalues. Then
B1/2 = Q���1/2QT. Similarly observation errors are simulated from
the R matrix Eq. (14). Table 1 shows the parameter values used to
define the error matrices. These reflect the typical settings in the
HARMONIE mesoscale model, further discussed in section 4.

B′ for HARMONIE is constructed from downscaling members
from the ECMWF Ensemble Prediction System (EPS) to generate
a HARMONIE ensemble. Currently four members are thought
to be sufficient with a downscaling performed over a period
of typically one month. The ensemble spread is reflected in
the resulting B′ matrix. Some diagnostic tools are available to
assess the overall correctness of B′. These include plots of the
background-error standard deviation, power density spectra and
vertical correlation of temperature, humidity, divergence and
vorticity as a function of pressure level (Brousseau et al., 2011). It
is known that the ensemble spread is generally underdispersive, i.e.
underestimating the real atmospheric spread. For each member,
downscaling is typically performed over 6 h. It was found that
this time span is too short for a mesoscale model to fully develop
energy on the small scales. The resulting B′ matrix will thus
reflect better the model error large scales and its amplitude will
underestimate the true error. This motivates the larger correlation
length-scale used in B′ and the smaller error standard deviation
as compared to the truth.

In section 4.1, we consider AMDAR (Aircraft Meteorological
DAta Relay) winds for active observations and aircraft Mode-S
EHS winds for passive observations. Table 1 values reflect the
corresponding error characteristics.

Setting xt = 0 for simplicity, but without loss of generality,
1000 realizations of xb and yo were simulated using the above
equation for xb, the values in Table 1 and the analysis equations,
Eqs (1)–(3). For each realization of xb and yo, the analysis
xa is obtained from Eq. (1). This requires the gain matrix
K′ which is obtained from the prescribed background- and
observation-error covariance matrices B′ and R′ respectively
from Eq. (2). These latter two matrices deviate substantially from
their true counterparts. B and B′ follow from Eq. (13) with
corresponding parameters values taken from Table 1. The true R
matrix is calculated from Eq. (14) given the values in Table 1 for
active observations. Following operational practice, R′ is taken
as a diagonal matrix with values representing the sum of the
instrument error and representativeness error variances. In the
case of expected error correlation for nearby observations, an
inflation factor fi is applied to the matrix diagonal elements. As a
result R′ = σ 2

R′ I with σ 2
R′ = fi(σ 2

I + σ 2
R). In our simulation tool,

the inflation factor is determined from the ratio of the first off-
diagonal element and diagonal element of matrix R. For a ratio

∗https://en.wikipedia.org/wiki/Eigendecomposition of a matrix; accessed 22
July 2016.
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Table 1. Parameter settings for a typical mesoscale model like HARMONIE
(discussed in section 4): assumed true state and aircraft observations, including
true and specified background- and observation-error standard deviations and

length-scales.

Parameter Unit Setting

�x km 2.5
�s Active km 200
�sp Passive km 2.5
σB True – 2.5
LB True km 50
σB′ Prescribed – 2.0
LB′ Prescribed km 250
σI Active/passive – 1.5
σR Active/passive – 1.0
LR Active/passive km 25
σR′ Prescribed – See text
LR′ Prescribed km 0

The parameters are defined and discussed in the text. For σ values, no specific
meteorological variable is considered, so the unit is taken as dimensionless.

value < 0.1, fi is set to 1; between 0.1 and 0.25 it is set to 2.25, and
for > 0.25 it is set to 4. From the values in Table 1, the inflation
factor equals 2.25. In a simulation model setting, both the gain
matrix based on prescribed errors and the optimal gain matrix
can be calculated from Eq. (2). The corresponding suboptimal
and optimal analysis-error covariance matrices are obtained from
Eqs (4) and (5) respectively.

3.2. Spatial consistency of the gain matrix

The gain matrix in DA spreads the observational information in
the model domain. The radius of action is largely determined by
the correlation length-scale of B′. One can ask whether the impact
on the analysis away from locations of assimilated observations
is as good as nearby. This was assessed by simulating passive
observations with characteristics specified in Table 1, i.e. high-
resolution sampling, �sp, with an observation on each model
grid point and with identical error characteristics as the actively
used observations. Given the high density of passive observations,
departure statistics for passive observations db

p and da
p can be

calculated as a function of distance d from assimilated (active)
observations. Here db

p(d) = Ddb
p is defined with D a matrix of

zeros and ones filtering those elements of vector db
p for which

the location of the passive observation is at a distance d from
the nearest active observation. The relative model state error
reduction achieved by actively used observations a distance d away
from the location of active observations, �x(d), is defined as:

�x(d) := Tr < db
p(d)db

p(d)
T − da

p(d)da
p(d)T >

Tr < db
p(d)db

p(d)T
>

(15)

= Tr{D(db
pdb

p
T − da

pda
p

T)DT}
Tr{Ddb

pdb
p

TDT}
(10,12)= Tr[D{Hp(B−A′)HT

p + (X+XT)}DT]

Tr[D(HpBHT
p + Rp)DT]

, (16)

with ‘Tr’ denoting trace, i.e. the sum of the matrix diagonal
elements. Hence, each term in Eq. (15) equals the mean variance
of all departures a distance d away from the nearest actively used
observation. From Eq. (16) and ignoring the X terms (discussed
below), it is found that a positive value for �x(d) implies a
smaller analysis than background error, while negative values
imply a larger analysis than background error, i.e. the assimilated
observations have degraded the model state relative to the
background.

Figure 1 shows a steady decrease of observation impact on the
analysis further away from the observation location irrespective
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Figure 1. Relative model state error reduction, �x(d), as a function of distance
from assimilated observations. See the text for details. Results are for using the
gain matrix K′ from prescribed error covariance matrices (solid and dash-dot),
the optimal gain matrix K (dashed) and the adapted gain matrix αK′ (solid
with circles), discussed in section 3.3. Correlation of representativeness errors
of passive and active observations has been taken into account, except for the
dash-dotted line which is based on the assumption of no correlation. Negative
observation impact is observed when curves drop below the dotted line.

of the used gain matrix, i.e. both from prescribed (solid and
dash-dotted curves) and exact (dashed curve) error covariances
matrices. The model state is improved close to assimilated
observations. However the solid curve shows that the model
state is degraded, on average, when the distance to the nearest
assimilated observation exceeds 55 km when using the gain matrix
from prescribed error-covariance matrices. The dashed curve
shows that the model state has improved over the complete
domain when using the optimal gain matrix, but however this
is not available in practice. The dash-dotted curve is obtained
from the same settings as the black curve but now ignoring
the correlation of representativeness errors of active and passive
observations. Hence, the difference between the black solid and
dash-dotted curve is attributed to the X terms in Eq. (12); this
difference is maximized for passive observations measured at
the same location as active observations and vanishes for large
separations, as expected.

3.3. Tuning of the gain matrix

The previous section showed that passive observations can be
used to quantify the performance of an inherently imperfect gain
matrix, i.e. whether increments from active observations have
drawn the model state toward passive observations. Next, one
can question whether passive observations can be used to adapt
the gain matrix and improve subsequent analyses. The most
simple adaptation to the gain matrix is through a scalar factor.
Here, we aim to find a scalar adaptation of the gain matrix such
that the resulting analyses are closer to passive observations. In
other words, we aim to find scalar α which minimizes the norm
‖yo

p − H{xa(α)}‖, given xa = xb + αK′db. Substituting xa, and
minimizing the norm by setting the derivative with respect to α

equal to zero, yields

α = βββTdb
p

βββTβββ
, βββ = HpK′db = Hp(xa − xb). (17)

The latter equality is obtained by using Eq. (1), i.e. vectorβββ simply
is the projection of the analysis increment to passive observation
space. For each of the 1000 realizations, α was computed from
Eq. (17) and a new analysis calculated using the adapted gain
matrix. Figure 2 shows the corresponding value of α for each
realization. The mean value of about 0.6, which is smaller than 1,
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Figure 2. Gain factor adaptation α to be applied to K′ for each of the 1000
realizations of simulated background state and observations.

indicates that too much weight has been assigned to observations
relative to the background when using the prescribed error
covariances. As such, passive observations can be used not only to
diagnose but potentially also to tune the gain matrix. Interesting
is the large spread for α with sometimes even negative values.

Following the same procedure as in the previous section,
but now using analyses based on adapted gain matrices yields
the solid curve with circles in Figure 1. Comparison with the
black curve shows that the analysis has slightly degraded within
about 30 km from actively used observations, but has improved
substantially for larger distances, with larger area below the solid
curve with circles than the solid curve, meaning that the model
state is closer to the true state, on average, in particular away
from assimilated observations through adapting the gain matrix.
Clearly, the adapted gain matrix performs less than the optimal
gain matrix (dashed curve).

3.4. Departure and model error statistics

Departure and model state error statistics have been calculated
from the simulated observations and model states for the various
options of the gain matrix. Figure 3 summarizes the results for
active and passive observations. It should be kept in mind that
statistics displayed in (a) are generally available in operational
practice, however statistics in (b) are not available because the
true atmospheric state is inherently unknown. On the other
hand, (b) is of particular interest, i.e. how well have assimilated
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Figure 3. Standard deviation of departure, d (part 1: 10 bars in (a)) and of model
error, εεε (part 2: 10 bars in (b)). Statistics differ because of the used observations
in the departures, either from active (no subscript) or passive (subscript p)
observations and the used gain matrix in the analysis, K′, K or αK′. The last
two bars of each part are the result of active use of passive observations in data
assimilation, the left(right) bar from analyses based on a gain matrix from the
prescribed(exact) error covariances.

observations drawn the model state toward the truth, starting
from the background? The discussion below aims to learn how
departure statistics (a) relate to model error statistics (b), to
achieve a similar translation in operational practice.

The leftmost bar of Figure 3(a) is the standard deviation
of db for active observations which should be close to the
square root of the sum of the true background error and
observation error variance of active observations, i.e. from Table 1,√

2.52 + 1.52 + 12 = 3.08. The corresponding (same greyscale)
bar in (b) is the standard deviation of the true background error,
εεεb with a value of 2.5 in agreement with Table 1. The second
bar of both parts show the standard deviation of da and εεεa based
on the gain matrix from prescribed error covariance matrices.
da is substantially smaller than db, with a value of 1.99, however
the analysis error standard deviation is only marginally smaller,
with a value of 2.40, than the background error (compare first
two bars in (b)). This is in agreement with the black curve of
Figure 1 which shows an overall model state error reduction (area
below the curve >0). The third bar of both parts is the result
of da and εεεa when using the optimal gain matrix in DA. This
result is not available in practice, but shows a further reduction
of da, with a value of 1.06. It is noted that da is not necessarily
minimized when using the optimal gain matrix. For instance, the
unlikely situation of infinite weight given to observations (when
the prescribed observation error equals zero or the background
error is set to infinity) draws the analysis completely to the
observations yielding da equal to zero. However, the resulting
analysis does not minimize the analysis error. The third bar in (b)
shows the minimum analysis error from using the optimal gain
matrix, with a value of 2.10. Note that the minimum analysis error
is only about 16% smaller than the background error (first bar
in part 2) compared to the analysis departure in Figure 3 which
is about 66% smaller than the background departure (bars 1 and
3 in (a)). The fourth bar of both parts is the result of da and
εεεa when using the adapted gain matrix. In (a), the result seems
worse than using the non-adapted gain matrix (second bar), but
as discussed above and confirmed below, the analysis departure
of active observations cannot be used to draw any conclusion
on the analysis error. In fact the larger value of the fourth bar
is consistent with the finding above that less weight should be
given to observations, through adaptation of the gain matrix with
α < 1, to better draw the model state to the true atmospheric
state. The resulting analysis then draws closer to the background
and less to observations, resulting in an increased value of 2.34
for da, relative to the use of the non-adapted gain matrix. Indeed,
in contrast to (a), the fourth bar in (b), i.e. the analysis error
standard deviation after gain adaptation, has a value of 2.29, which
is smaller than from the non-adapted gain (second bar) but larger
than from the optimal gain (third bar of (b)), as expected.

The next four bars of both parts are similar to the first four
bars of both parts but now for departure statistics from passive
observations, op. For part 1, background departures in the fifth bar
equal the first bar for identical error characteristics of active and
passive observations (Table 1). The sixth bar, with a value of 2.95,
has not reduced as much compared to the fifth bar as the second
bar compared to the first bar. This is clear from the discussion in
section 2. Using the optimal gain matrix further reduces (op − a)
for passive observations in the seventh bar, with a value of 2.76,
but not as dramatic as the third bar. The eighth bar, with a value of
2.88, is the result of using the adapted gain matrix, which should
result in a lower value than the sixth bar by construction. It can be
easily shown that < (op − a)2 > is minimized for K′ = K (bar 7).
For part 2, bars 1–4 equal the corresponding bars 5–8, simply
because the calculation of the analysis error,εεεa, standard deviation
is irrespective of observations. In fact from these results the total
contribution of the X terms in Eq. (12) can be obtained as the sum
of the analysis error variance (squared value of bar 2 in part 2) plus
the observation error variance (from Table 1) minus the analysis
departure variance of passive observations (squared value of
bar 6 of part 1) which equals 2.402 + 1.52 + 1 − 2.952 = 0.31.
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Hence, for the settings in Table 1, the contribution of the
representativeness error covariance to the analysis departure
covariance of passive observations in Eq. (12) is small, which
explains the similar (not identical because of the applied square
root to go from variances to standard deviations) shape of bars
5–8 in part 1 and part 2; the analysis error variance is well
estimated from passive observations by subtracting their total
observation error variance from their analysis departure variance.

Finally, one may ask whether active use of passive observations
would further improve analyses. Indeed the ninth and tenth bars
are below bars 5–8 in both parts. From the last two bars in part 2
it is clear that actually assimilating the 2000 passive observations
gives the best result, i.e. yielding a further reduction of the analysis
error than when using only 25 observations. This seems evident,
yet in actual global DA systems, including satellite observations,
over 95% of the observations are neglected from assimilation,
because the gain matrix is far from optimal, partly because actual
observation-error correlations are not well known and/or not
well accounted for and partly because B′ is incorrect because it
is based on climatology rather than the actual weather situation.
Gain adaptation through a flow-dependent B′ has already proved
to be beneficial for global NWP (Bonavita et al., 2012).

In summary, this section has shown, in a simulation envi-
ronment, that analysis departures of active observations cannot
be related directly to the analysis error. A direct relationship
does exist for analysis departures of passive observations whose
variance is close to the sum of analysis and observation error
variances, depending on the correlation of the representativeness
errors of active and passive observations. Furthermore, passive
observations can be used to calculate an adaptation factor for
an imperfect gain matrix used in DA. Use of the adapted gain
matrix reduces the analysis error by construction. The sign of
the adaptation indicates whether observations have been used
too aggressively (adaptation < 1) or too conservatively (adap-
tation > 1) Direct assimilation of all observations, i.e. turning
passive into active observations, would further reduce the analysis
error. However, this is not common practice in DA nowadays,
mainly because of imperfect knowledge of real background and
observation errors and imposed simplifications for computa-
tional efficiency. As a consequence, nowadays practice is to neglect
over 95% of the observations, at least in global DA. Rather than
neglecting these data, the simulation tool has shown the potential
of their use to verify and adapt the gain matrix. This idea is further
explored in a real data assimilation system in the next section.

4. Use of passive observations in the HARMONIE
mesoscale model

The non-hydrostatic convection-permitting HARMONIE model
is developed in cooperation with the ALADIN project† and builds
upon model components that have largely initially been developed
in these two communities. At a default horizontal grid size of
≤2.5 km, the forecast model and analysis system are basically
those of the AROME model from Météo-France (Seity et al.,
2011).

The construction of the prescribed background-error covari-
ance matrix, B′, for the current experimental version of the
HARMONIE model, cycle cy38h1.2, was described in section 3.1.
To test the performance of B′, an experiment has been conducted
with HARMONIE for the period 15 November to 31 December
2013. This period includes the 5/6 December ‘Sinterklaas storm’,
also known as the ‘Mandela storm’, which hit Northern Europe
with at least ten casualties. Extreme winds in combination with
a spring tide caused extreme water levels at Western European
coasts, the largest in the Netherlands since the 1953 flood disaster.
HARMONIE boundary conditions are from the global ECMWF

†ALADIN: Aire Limitée Adaptation dynamique Développement InterNational,
a collaboration by national meteorological services of Central and Eastern
Europe on limited-area NWP.

model. For DA a 3D-Var (Courtier et al., 1998) implementation
is used with 3 h cycling, i.e. eight analyses are performed each
day. Observing systems used include: SYNOP ground stations
over land and sea (from ships), buoys, AMDAR (aircraft) and
radiosondes. These are the active observing systems.

Figure 4 shows departure statistics for AMDAR aircraft data
(black curves). Overall, the biases are much smaller for the
analyses than the background and also the standard deviations
have reduced substantially.

However, from the discussion in section 3 one cannot conclude
on the correct tuning of the DA system in general and the
correctness of B′ in particular, based on this result only. The only
conclusion is that DA draws the model state closer to assimilated
observations.

4.1. DA tuning using passive Mode-S EHS observations

Recently, new observations have become available from mode
selective (Mode-S) communication between aircraft and ground
air traffic control radars (de Haan, 2011; Strajnar et al.,
2012). Communication takes place every 4 s. With an average
aircraft speed of 250 m s−1, data every 1 km along the track are
transferred to air traffic control from which local atmosphere wind
components and temperature can be inferred (de Haan, 2011).
Here, the so-called Enhanced Surveillance variant of Mode-S
(Mode-S EHS) was used to derive atmospheric observations,
denoted below as Mode-S. With on average 24 000 observations
per hour (more during daytime, less at night), Mode-S provides
a high-resolution dataset both in space and time, which has been
assimilated successfully in NWP recently (de Haan and Stoffelen,
2012; Lange and Janjić, 2016). Figure 5 shows the typical daytime
coverage of AMDAR and Mode-S observations.

Wind and temperature observations from Mode-S have not
been used in the experiment (passive observations) and can thus
be used as an independent referee to judge the quality of analysis
increments obtained from the experiment. A total of 24 646 671
Mode-S observations for wind and temperature were obtained
for the 6-week experimental period in the HARMONIE domain.
The vertical coverage in Figure 6 shows a limited number of
preferred flight levels (the spikes in the figure), with most of the
observations taken in the upper troposphere above 500 hPa.

The departure statistics in Figure 4 show a slightly larger
bias of background departures for Mode-S observations than
for AMDAR, except in the lower troposphere for the zonal
wind and in the upper troposphere for temperature, with larger
biases for AMDAR background departures. As expected, biases
of analysis departures are smaller for AMDAR because these
observations were assimilated in contrast to Mode-S data. The
standard deviation of background departures is smaller for Mode-
S for both wind components, confirming the good quality of these
data (de Haan, 2011). Also, the relative poor quality temperature
observations, found in de Haan (2011), is apparent from the large
background departures below 500 hPa in Figure 4(e). From the
departure statistics of AMDAR and Mode-S, it is concluded that
the quality of the latter is at least as good for winds, however a bias
of ∼ 0.2 m s−1 is found for Mode-S meridional wind components.
Mode-S temperature data are of poorer quality, but only in the
lower troposphere.

Figure 4 also shows that the standard deviation of analysis
departures is always smaller than background departures for both
the passive (Mode-S) and active (AMDAR) observing systems.
For active observing systems this is expected. Also, the standard
deviation of background and analysis departures is much closer
for passive than active observing systems, in agreement with the
findings in section 3, in particular Figure 3(a). From the discussion
in section 3.3, the analysis departure for passive observing systems
is related closely to the analysis error. The smaller analysis than
background departure for Mode-S then implies a smaller analysis
than background error, on average. In other words, from the
departure statistics of Mode-S observations it is inferred that the
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(a) (b)

(c) (d)

(e) (f)

Figure 4. AMDAR (black) and Mode-S EHS (grey) departure statistics for (a, b) the zonal wind component, (c, d) the meridional wind component and (e, f)
temperature. Panels (a, c, e) show standard deviation and (b, d, f) bias. The y-axis denotes pressure (hPa). Solid and dashed lines denote the background and analysis
departures, i.e. (o − b) and (o − a), respectively. Statistics are based on the complete 6 week experimental period 15 November to 31 December 2013 in which AMDAR
data were used actively and Mode-S EHS data passively. The numbers on the right-hand side give the total number of AMDAR (black) and Mode-S EHS (grey) data
used in the statistics. These numbers should be multiplied by 1000.
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Figure 5. Typical daytime coverage of AMDAR (black) and Mode-S (grey)
observations, here on 15 November 2013 near 1500 UTC. For AMDAR, locations
of all observations used in the 1500 UTC analysis are displayed. For Mode-S, only
locations of observations within 15 min from analysis time are displayed.
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Figure 6. Mode-S data count as a function of pressure level over the 6 week
experimental period. The x-axis is logarithmic.

active observations have drawn the model state closer toward
the true atmospheric state, implying that the tuning of the
HARMONIE DA system is at least adequate.

As in section 3.2, the model state error reduction from
increments has been determined as a function of distance from
active observations. Figure 7 shows that Mode-S observations are
generally closely positioned to assimilated observations, i.e. within
50 km. The nearest active observation to each Mode-S observation
is determined in three-dimensional space. From Figure 5 it is
clear that, for the vast majority of Mode-S observations, the
nearest active observation will be from AMDAR, considering that
alternative upper-air measurements are from radiosondes only,
with coarse spatial and temporal coverage.

From Figure 7 it appears that assimilated observations improve
the analysis, on average, at least for distances up to 65 km from
the observation location. This is an indication that the structure
functions of the B′ matrix, which control the spatial distribution
of the increment, are appropriate, on average.

The increasing model state error reduction for the meridional
wind and temperature at larger distances is in contrast to Figure 1.
This is explained by noting that the denominator of Eq. (16) is
constant in the simulation tool of section 3, i.e. the background
departure variance is independent of the distance from assimilated
observations, by construction. The consistent decrease of the
curves in Figure 1 is explained by the consistent increase of
analysis departures with distance from assimilated observations.
However, Figure 8 shows that in real-world NWP both the analysis
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Figure 7. Relative model state error reduction as in Figure 1, but now for
passive Mode-S zonal (squares) and meridional (diamonds) wind components
and temperature (triangle) applied to HARMONIE model background and
analysis fields. Matrices D (section 3.2) were designed such that background
and analysis departures were assigned to 5 km bins (d = 0–5, 5–10, 10–15 km,
etc.), depending on the distance d of passive observations to the nearest active
observation. The dashed line denotes the number of Mode-S observations used
over the complete 6 week period as a function of distance to the nearest assimilated
observation. Note that the y-axis is logarithmic, i.e. the numbers along the axis
are powers of 10. The data count is identical for all three parameters measured by
Mode-S: u, v and t.
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Figure 8. Mean model background departure variance (dashed) and analysis
departure variance (solid) for passive Mode-S observations as a function of
nearest distance between locations of Mode-S and assimilated observations for
the zonal (square) and meridional (diamond) wind component and temperature
(triangle).

and background departures increase away from assimilated
observations. In fact their growth rate is quite similar, at least for
distances up to 40 km. Then, the numerator of Eq. (16) is almost
constant and the decreasing trend is explained by the increasing
denominator with distance. Beyond 40 km distance, the growth
rate of the background departure is stronger than the analysis
departure for the meridional wind component and temperature
(divergence of the curves with diamonds and triangles) explaining
the corresponding growth of the corresponding bars in Figure 7.
However, the growth rates beyond 40 km are less accurate because
of a strong reduction of one or two orders of magnitude in the
number of data (Figure 7).

Clearly, for constant background departures over the complete
model domain, the trends of the bars in Figure 7 would be equal to
the curves in Figure 1. The observation of increasing background
departures away from assimilated observations is interesting in
itself and is further elaborated in section 5.
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Next, the procedure discussed in section 3.3 is used here to tune
the gain matrix K′ used in HARMONIE. For each analysis over
the 6-week period adaptation factors are calculated for the two
horizontal wind components and temperature, from Eq. (17), at
pressure levels with at least 1000 Mode-S observations available
within 15 min from analysis time. Figure 9 shows a typical example
for the zonal wind component at 217 hPa, which corresponds to
one of the spikes in Figure 6. At this pressure level almost 300
analyses in the 6-week period fulfilled the requirement of at least
1000 passive observations for the calculation of the gain matrix
adaptation factor. The black line shows that the gain factor varies
substantially for different analyses, similar to Figure 2. For Mode-
S departures in the bottom panels, (op − b) (light grey) is above
(op − a) (dark grey), on average, in agreement with the grey lines
in the top panel of Figure 4 at 217 hPa. The black line is the result
of (op − a) after gain adaptation.

To arrive at this result, we did not rerun the experiment
including gain adaptation, but instead made a highly simplified
assumption of NWP as a univariate system, i.e. ignoring physical
relations between model parameters. Then the analysis after
gain adaptation, x̂a, can be calculated from the available analysis
increment using Eq. (1) as follows. The adapted gain matrix yields

x̂a = xb + αK′[yo − H(xb)].

Following Eq. (17), and substituting the analysis increment into
the above equation, yields

x̂a = xb + α(xa − xb).

Resulting analysis departures have reduced by construction; the
black line is below the dark grey line for all analyses. Clearly,
the univariate assumption is not valid for NWP. The resulting
gain matrix adaptations can therefore not be applied directly
in operational NWP to improve analyses. A multivariate NWP
system requires a more elaborate adaptation of the gain matrix
which is outside the scope of this article. We come back to this in
section 6.

The mean value of the black curve in Figure 9 gives an overall
indication of whether the relative weight given to the model
background and observations at this pressure level is correct, on
average, for the 6-week period. The mean value of 0.89 indicates
an overestimate of the relative weight given to the observations
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Figure 10. Gain matrix adaptation factor for the zonal (square) and meridional
(diamond) wind component and temperature (triangle), averaged over the 6-week
period for selected pressure levels with over 1000 Mode-S observations. The black
dashed line denotes a gain factor of 1 for reference.

at this level. Similar calculations were performed for selected
pressure levels and Mode-S measured parameters. Given the
selection criteria and from Figure 6, pressure levels with sufficient
Mode-S coverage are found in the upper troposphere only. The
resulting Figure 10 shows that the gain matrix adaptation is
generally below 1 for wind and temperature at all pressure levels.
From this result we conclude that, on average, too much weight
has been given to the observations in HARMONIE relative to the
model background.

4.2. Active use of passive observations

In the previous section Mode-S observations were used passively
to diagnose a DA system. One could ask whether instead active use
of Mode-S would improve the model state, similar to section 3.3.
Thus we ran another experiment with the HARMONIE model
over the same 6-week period, now using Mode-S observations
in addition. It was mentioned in section 4.1 that the distance
between adjacent Mode-S observations is about 1 km, i.e. much
smaller than the HARMONIE model effective resolution of about
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Figure 9. (a) Gain matrix adaptation factor (black) for the zonal wind component at 217 hPa and the number of Mode-S observations (grey) used in the calculation
of the adaptation factor. (b) Mode-S departure standard deviation, for (o − b) (light grey), (o − a) for the default gain matrix (dark grey) and (o − a) for the adapted
gain (black) used in the calculation of the analyses.
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Figure 11. As Figure 10, but now with a limited number (through data thinning)
of Mode-S data used in DA.

25 km. To reduce error correlation of used Mode-S observations,
we applied data thinning, such that the distance of actively used
observations equals 15 km, i.e. less than 7% of the measured
Mode-S data have been used in DA, leaving over 93% used
passively.

Next, gain adaptation calculations were performed, similar to
the previous section. In contrast to Figure 10, gain adaptation
factors now show all values above 1 in Figure 11. This is explained
by the fact that the maximum distance between active observations
(including from Mode-S) and passive Mode-S observations is
generally below 10 km, for the applied data thinning. Also, a
smoothing operation has been applied to the raw Mode-S data
(de Haan (2011)), which introduces some correlation in the
error characteristics of Mode-S observations over distances up
to 15 km. Clearly, a better fit to passive Mode-S observations is
then obtained by giving more weight to Mode-S observations used
actively in DA, which is achieved by enlarging the gain matrix. This
example shows that the adaptive gain calculation suffers the same
limitation as a DA system: use of observations with correlated
errors should be avoided if not taken into account properly. In
contrast, the correlation of errors for observations from AMDAR
and Mode-S EHS, used in the previous section, is expected to be
very small. First, because the number of aircrafts reporting both
through AMDAR and Mode-S EHS is very limited (e.g. Figure 5).
In addition, the measurement techniques and processing from
both systems differ substantially. Finally, assessing the correlation
of errors between Modes-EHS observations from different aircraft
is currently under investigation at KNMI (de Haan, 2015). First
results indicate that these error correlations are negligible, which is
explained by the different on-board instrumentation of different
aircraft companies and even within a single company for different
plane types.

4.3. Application to the ECMWF model

Mode-S observations are not used by ECMWF and can thus
be used to diagnose the ECMWF model. The situation is
slightly different from HARMONIE because ECMWF operates
a 4D-Var assimilation system with a 12 h assimilation window.
Also from the ECMWF archive only forecasts initiated at 0000
and 1200 UTC are available. Because Mode-S observations at
0000 UTC are limited, we use for xb in Eq. (17) the 12 h ECMWF
forecast valid at 1200 UTC. The term K′[yo − H(xb)] equals the
analysis increment, which is obtained from archived analysis and
corresponding background model fields. Hp maps the ECMWF
model parameters to the location of passive observations, yo

p, here
from Mode-S. This includes vertical interpolation from model
to pressure levels and horizontal interpolation from the nearest
model grid points to the observation location. No temporal
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Figure 12. As Figure 10, but now for the ECMWF model, the version operational
in December 2013.

interpolation was needed because Mode-S observations measured
within 15 min from verification time were selected.

Figure 12 shows the mean adaptation to the gain matrix needed
to bring the ECMWF analysis closer to Mode-S observations. The
same criteria as in Figure 10 have been adopted. This explains
the reduced number of pressure levels in Figure 12, because
of the limited number of analyses per day done by ECMWF
(two) relative to HARMONIE (eight). From these figures, the
gain adaptation factors are closer to 1, on average, for ECMWF,
implying that the ECMWF DA system is well tuned in the
sense that analyses are close to independent passive observations,
here from Mode-S aircraft data. The values substantially smaller
than 1 for temperature in the topmost pressure levels suggest
that too much weight has been given to observations which
impact the model temperature at these levels. We recall that the
quality of Mode-S temperature is good in the upper troposphere
(Figure 4(e, f)).

5. Observation impact assessment

Observation impact assessment is not limited to model analyses,
as discussed in the previous sections, but includes model forecasts
as well. In an OSE, one aims to assess the additional value of an
observing system by comparing the skill of model forecasts from
two different experiments, one denying and the other adding
the new observing system under investigation. The former is in
the remainder denoted the control (CTRL) experiment, the latter
CTRL+NEWOBS. A widely adopted skill score is from statistics of
observations minus forecast, in the remainder denoted in short as
(o − f ). Observations used for verification (o) have not been used
in the analysis and subsequent forecast (f ) and thus one could
naively think that o and f in (o − f ) are independent and the
resulting skill score is independent of the used observing system
for verification. The previous sections have learned that, even in
the case of observations not used in DA, there is a caveat based
on four points:

(i) increments are best close to actively used observations (both
for a perfectly and imperfectly tuned DA system);
(ii) the correlation between increments and evolved increments
in the short term is large on average, e.g. between 0.6 and 0.7
for HARMONIE 1 h evolved increments and slightly larger for
ECMWF (not shown);
(iii) non-zero correlation of the analysis error (and subsequent
forecast error) and the representativeness error of verifying
observations (discussion at the end of section 2), with magnitude
depending on the sampled air mass and spatial separation of
observations used in the model forecast initial state and for
verification;
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(iv) distances between active observations and observations
used for verification are generally smaller for observing systems
used both in the analysis and for verification than when using
observations from different observing systems in the analysis and
for verification.

Given the large correlation between increments and evolved
increments and maximum performance of increments near
assimilated observations implies that the quality of short-term
forecasts is likely to be best, on average, in areas near assimilated
observations and thus model forecast verification in these areas
is likely to give the best skill scores. This is confirmed by the
curves with diamonds in Figure 8, showing increasing background
departures and thus increasing background errors, from Eq. (10)
and assuming non-varying observation errors with distance from
locations of assimilated observations. As a further example, Mode-
S observation density is largest and more or less fixed near airports
and along air corridors. Hence, when using Mode-S both in DA
and for verification, it is likely that the volume where forecast
quality is best is better sampled by Mode-S than (e.g.) radiosondes,
on average, thus yielding better skill scores when verified against
Mode-S than against radiosondes. In addition, it is more likely
that observations from Mode-S used in the forecast initial state
and for verification sample the same airmass, implying non-
zero correlation of their representativeness errors which reduces
(o − f ) similar to (o − a) in Eq. (12).

In general, verification of both CTRL and CTRL+NEWOBS
with observations from the new observing system is likely to
yield better forecast scores for the latter, at least in the short
term. Skill scores are therefore likely to be biased toward
experiments using observations for verification from the same
observing system as used in the analysis. This might be the
case even for relative poor-quality data from the new observing
system, potentially leading to incorrect conclusions on the added
value of the new observing system for NWP. Figures 13 and 14
show that the assimilation of observations has added value for
HARMONIE wind and temperature; the dark grey (no DA) is
always above the other curves (with DA). Comparing the light grey
(CTRL) and black (CTRL+Mode-S) experiments, the skill score
is largely overlapping when using observations from AMDAR
for verification (a). Note that both experiments assimilate
observations from AMDAR. When using observations from
Mode-S for forecast verification, then (b) suggest a clear added
value of using additional observations from Mode-S for forecasts
up to 3–6 h. From Figure 14(b), this is even true for the relatively
poor-quality lower-troposphere temperature observations from
Mode-S (Figure 4(e, f)). These biased conclusions are explained
in the discussion above.

The results above explain the verification scores of Strajnar et al.
(2015), who assimilated Mode-S observations and demonstrated
positive scores when using Mode-S for verification, but neutral
impact when using radiosondes for verification (their Figures 8

and 9). Also, their results for the summer period are less positive
than the winter period, possibly because the latter contains a
stable high pressure period with reduced advection, thus yielding
higher correlations between increments and evolved increments.
de Haan and Stoffelen (2012) show mainly neutral impact from
assimilating Mode-S on 3 h forecasts at 400 and 875 hPa (‘Ref’
and ‘RefM’ experiments in their Figures 9 and 12). Clearly, for
overall neutral impact, skill scores are irrespective of the observing
system used for verification.

6. Summary, discussion, conclusions and outlook

Passive, i.e. not assimilated, observations are valuable to diagnose
and tune a DA system. Neglecting observations from assimilation
may have several reasons. For instance, imperfect knowledge of
observation-error characteristics, in particular error correlations,
is generally solved through data thinning strategies. In operational
practice, about 95% of observations are not used for this
reason. Also a DA system may not yet be ready to adopt
observations from a relatively new observing system. Departure
statistics from passive observations provide useful information
on the tuning of the DA system, i.e. whether the correct weight
has been given to observations in the analysis. This weight is
based on prescribed, and inherently imperfect, background- and
observation-error covariances. An adaptation factor for the gain
matrix can be calculated such that the resulting analysis best
fits the selected valuable passive observations. To be valuable,
correlation of errors from passive observations and from active
(assimilated) observations should be small, preferably zero.
Denied observations from data thinning potentially suffer from
this issue and should therefore be denied also from the gain
adaptation calculation. As a consequence, passive observations
used for DA diagnostic should ideally come from an observing
system not used in assimilation.

In contrast to active observations, the covariance of analysis
departures for passive observations is generally close to the
sum of the analysis-error covariance and the observation-error
covariance. The equality is not exact because the tempting
assumption of zero correlation between analysis errors and errors
from passive observations is violated when the representativeness
error of actively used observations (as part of the analysis error)
and passively used observations is non-zero. This may occur for
observations closely separated in space and time and sampling
the same air mass.

From the above property, the analysis-error characteristics
(variance and correlation length-scale) can potentially be obtained
from the analysis departures of passive observations, given
well-known characteristics of the observation error for passive
observations, used in the calculation of the analysis departure
covariance. The resulting estimated analysis-error covariance
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Figure 13. HARMONIE model forecast skill for the zonal wind component at 225 hPa. The skill score is defined here as the root mean square of (o − f ). Verification is
done against data from (a) AMDAR and (b) Mode-S. Three 6-week experiments were conducted: no observations (dark grey), CTRL (light grey) and CTRL+Mode-S
(black). The verification area is mainly Germany where Mode-S observation density is largest (Figure 5). For all forecast lead times and experiments, the same dataset
is used for verification (8851 from AMDAR and 965 675 from Mode-S).
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Figure 14. As Figure 13, but now for temperature at 875 hPa. The number of data used in the forecast verification was 14 699 (AMDAR) and 200 184 (Mode-S).

provides an alternative for the Desroziers diagnostic (Desroziers
et al., 2005) which is part of future research in our department.

Also, the difference of analysis and background departure
statistics for passive observations identifies regions where
increments (from assimilated observations) have improved or
degraded the model state, on average. This has been done as a
function of distance to assimilated observations and provides an
indication of the correctness of prescribed structure functions of
the background-error covariance matrix which spatially spreads
the observational information in three-dimensional space. It was
confirmed that analyses and subsequent backgrounds degrade
with distance from assimilated observations.

These general findings were obtained in a simulation
environment and confirmed when applied to a real DA
system from the mesoscale HARMONIE model. Here, high-
resolution aircraft observations from Mode-S EHS were used
as passive observations. The high quality of these Mode-S
EHS wind observations and temperature observations in the
upper troposphere was confirmed by comparing with departure
statistics from aircraft observations from AMDAR. It was
found that analysis increments improve the model state, on
average, for all distances away from assimilated observations,
indicating that prescribed background- and observation-error
covariance matrices are appropriate. On the other hand, from
the calculated gain adaptation factors, it was concluded that
the experimental HARMONIE version cy38h1.2 puts too much
weight to observations relative to the model background. Similar
calculations applied to the ECMWF model (note that ECMWF
does not make use of observations from Mode-S EHS) indicated
that their DA is generally well-tuned, but slightly overestimates
temperature observation information in the upper troposphere.

Using Mode-S EHS as a passive observing system provides
univariate adaptation factors for the wind components and
temperature, which do not take into account physical
relationships of these parameters, e.g. from geostrophic balance.
Because NWP is a multivariate system, direct application of
univariate adaptations to the gain matrix is not expected to be
beneficial. Instead, the calculated gain adaptation factors reveal a
general trend on the weight given to certain types of observations
in the analysis. This information can be fed back to the gain matrix
by adapting the variances of the corresponding parameters in
the prescribed observation- and/or background-error covariance
matrix.

The findings above culminate in a sketch of a potentially viable
procedure to make maximum use of observations in a 3D-Var
context, leaving untouched the structure functions from the
prescribed climatological background-error covariance matrix
(and diagonal observation-error covariance matrix):

1. Conduct a control experiment using conventional obser-
vations from radiosondes, AMDAR, SYNOP stations and
buoys;

2. Calculate gain adaptation factors from Eq. (17) using
passive observations from an independent (new), not

assimilated, observing system. The result is used to apply
a scalar adaptation to the prescribed background- and/or
observation-error covariances;

3. Repeat steps 1 and 2 with adapted background- and/or
observation-error covariance matrices, until the mean
value of the gain adaptation factors converges to 1;

4. The DA system is now well tuned to maximize the impact
from observations from used observing systems and ready
to adopt observations from the new observing system.

The procedure above progressively introduces new observing
systems into the DA system while guaranteeing optimal use
of accepted observing systems. Testing this procedure in an
operational DA system is part of future work. New observing
systems currently tested in the context of HARMONIE include:
Mode-S EHS wind and temperature, scatterometer ocean surface
winds, radar radial wind and reflectivity and humidity from the
Global Navigation Satellite Systems (GNSS). Implementation of
the procedure above is the subject of further research. Application
of the tuning procedure is applicable too, in principle, in a 4D-Var
context and using non-fixed but flow-dependent background-
error covariances.

Finally, a caveat was revealed when assessing the impact of
an observing system for NWP through verification of resulting
forecasts with observations from the same observing system,
which is a widely accepted approach in OSE. Forecast skill
scores based on statistics of observations-minus-forecast (o − f )
may differ substantially, in particular for short-term forecasts,
depending on the observing system used for verification. First,
the tempting assumption of zero correlation of model forecast
and observation errors at verification time may be violated in
the calculation of (o − f ) statistics. Correlated representativeness
errors of actively and passively used observations reduce the
standard deviation of (o − f ). This is most likely when using an
actively used observing system for verification. Second, analysis
increments and their evolution in the short term are best near
assimilated observations. That is, model forecast quality is not
uniform over the verification area and forecast skill scores highly
depend on the sampling of the verifying observing system. This
explains the inconsistent skill scores found in Strajnar et al.
(2015) and to a less extent in de Haan and Stoffelen (2012) who
assimilated Mode-S EHS in their respective mesoscale models
and showed better skill scores when verifying against Mode-S
EHS rather than against radiosondes. The results demonstrate
that one has to be careful when using observations for forecast
verification when assessing the added value of new observing
systems for NWP. The best way to avoid biased skill scores
is to use observations from an independent observing system
for verification, i.e. an observing system not being used in all
experiments under investigation. In general, it is not easy to
find such an observing system, because DA systems are eager
to assimilate as many observations as possible. Alternatively,
one could use for verification an observing system used in
all experiments under investigation. Potential candidates are
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observing systems more or less used as default for all assimilation
experiments such as radiosondes and AMDAR for upper-air
verification and SYNOP stations for near-surface verification.
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Appendices

Appendix A: Analysis departure covariance of passive
observations

Section 2 mentions that the analysis error, εεεa, and observation
error from passive (i.e. not used in the analysis) observations, εεεp,
are not necessarily uncorrelated because the representativeness
error of active (i.e. used in the analysis) observations and
passive observations may be correlated. Here, we discuss how
this translates to the covariance matrix of analysis departures in
Eq. (11). As mentioned in section 1, the total observation error,
e.g. εεε in Eq. (3) equals the sum of the instrument error, below
denoted with superscript i, and representativeness error, below
denoted with superscript r. Active observations, denoted without
subscript, and passive observations, denoted with subscript p, are
then written

yo = Hoxt + εεεi + εεεr, (A1)

yo
p = Hpxt + εεεi

p + εεεr
p. (A2)

For simplicity, but without loss of generality, we have assumed
that mapping from model to observation space is accomplished
through a linearized observation operator matrix, i.e. using H
rather than H. From these definitions the analysis departure of
passive observations equals

yo
p − Hpxa Eq. (A2)= −Hp(xa − xt) + εεεi

p + εεεr
p

Eq. (1)= −Hp{xb−xt+K′(yo−Hoxb)}
+ εεεi

p + εεεr
p

Eq. (A1)= −Hp{I − K′Ho}εεεb

− HpK′εεεi−HpK′εεεr+εεεi
p+εεεr

p. (A3)

Taking the covariance of Eq. (A3) and assuming no correlation
between instrument errors, between instrument and represen-
tativeness errors and between the background error and all
observation error sources, all cross-terms vanish except for the
observation representativeness errors:

< (op − a)2 >:= < (yo
p − Hpxa)(yo

p − Hpxa)T >

= HpA′HT
p+ <εεεi

pεεε
iT
p > + <εεεr

pεεε
rT

p >

− (X + XT) (A4)

with X = HpK′ <εεεrεεεrT

p >. It is noted that the first three terms
of Eq. (A4) correspond to the quadratic terms of the analysis
departure covariance, by making use of Eq. (4). This result is
in agreement with the tempting assumption discussed below
Eq. (11) of uncorrelated analysis errors and errors of passive
observations. Also, the observation-error covariance matrix for
passive observations, defined above Eq. (10), equals the sum of
the instrument-error and representativeness-error covariances:

Rp =<εεεi
pεεε

iT
p > + <εεεr

pεεε
rT

p > .

When representativeness errors of active and passive
observations are not correlated, X in Eq. (A4) vanishes such that
the covariance matrix of analysis departures for passively used
observations does equal the sum of the analysis-error covariance
(mapped to observation space with the observation operator)
and observation-error covariance because the observation and
analysis error are truly independent. This is the case when passive
and active observations are sufficiently separated, either in space
or time.

The other extreme is when passive observations overlap with
active observations, i.e. Hp = Ho = H at locations of passive

observations. Then εεεr
p = εεεr and X = HK′ <εεεrεεεrT

>. Substituting
these expressions in Eq. (A4) and then rearranging terms
yields

< (op − a)2 >=[I − HK′][HBHT+R][I−HK′]T

+ (Y+YT)+ <εεεi
pεεε

iT
p > − <εεεiεεεiT>

=< (o − a)2 > + (Y+YT)+ <εεεi
pεεε

iT
p > − <εεεiεεεiT>, (A5)

with Y = HK′ <εεεiεεεiT> and Eq. (9) was used in the last step.
From Eq. (A5), the analysis departure is larger for passive than
active observations in the case of positive definite (Y + YT) and
equal instrument error of passive and active observations. In
general, the analysis departure is larger for passive than active
observations, i.e. the covariance from Eq. (A4) is larger than from
Eq. (9). This becomes more clear when considering the scalar case
in Appendix B.

Appendix B: Numerical scalar example

For simplicity, we assume that active and passive observations are
directly related to a model state variable and observed at an exact
model grid point. Then Ho = Hp = 1. For active and passive
observations, the analysis departure covariances are obtained
from Eq. (9) and Eqs (A4, 4) respectively. For simplicity, perfect
knowledge of all error sources is assumed, to deny the primes in
the equations.

< (o − a)2 >=(1 − k)2(σ 2
b + σ 2

oi + σ 2
or), (B1)

< (op − a)2 >=(1 − k)2σ 2
b + k2(σ 2

oi + σ 2
or)

+ σ 2
pi + σ 2

pr − 2kσopr, (B2)

with σb the true background-error standard deviation, σoi and
σpi the instrument error standard deviation of active and passive
observations respectively, σor and σpr the representativeness error
standard deviation of active and passive observations respectively,
and σopr is the cross-correlation representativeness error of the
active and passive observation. From Eq. (2),

k = σb
2/(σb

2 + σ 2
oi + σ 2

or).

Which of the two expressions is larger depends on the error
properties. Assuming that the quality of active and passive
observations are equal and their locations sufficiently far apart
to ignore the representativeness cross-correlation, Eq. (B2)
reads as

< (op − a)2> = (1 − k)2σ 2
b +(1+k2)(σ 2

oi + σ 2
or), (B3)

which always exceeds Eq. (B1) given positive k. For the extreme
case of overlapping locations for passive and active observations
and the above assumptions, Eq. (A5) reads as

< (op − a)2> = < (o − a)2> +2kσ 2
oi. (B4)

Taking σb = 2, σoi = 2, σor = 1, then k = 4/9, < (o−a)2>= 2.78
from Eq. (B1), < (op−a)2>= 7.22 from Eq. (B3) and
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< (op−a)2>= 6.33 from Eq. (B4). Also, the analysis error
variance σ 2

a = 2.22 from Eq. (5). Substituting in the scalar variant
of Eq. (A4), ignoring X, yields

< (op − a)2 >= σ 2
a + σ 2

oi + σ 2
or = 7.22,

in agreement with the value above from Eq. (B3).
This example demonstrates the general properties of analysis

departures which are smallest for actively used observations and
largest for passive observations with locations sufficiently distant
from active observations to ignore representativeness cross-
correlations. For locations of passive observations approaching
active observations, the analysis departure becomes smaller, but
is still always larger than for active observations, given the
assumptions above. For zero representativeness error, Eqs (B3)
and (B4) are equal, as expected.
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